sábado, 3 de novembro de 2012

A Utilização do Ábaco







Criança: Construção do conceito do número


Criança: Construção do conceito do número

O número faz parte do conhecimento matemático. Faz-se necessário que a criança pegue, junte, separe, aperte, amasse objetos a fim de chegar aos conceitos e ações próprias do conhecimento- matemático. Manipulando objetos serão trabalhados os setes esquemas mentais básicos para aprendizagem matemática: classificação, comparação, conservação, correspondência, inclusão, sequenciação e seriação (ou ordenação).
Na comparação determinados objetos são analisados estabelecendo diferenças ou semelhanças entre eles quanto à cor, forma, tamanho, espessura, etc. Esse processo mental, comparação, é importante, pois estabelecendo diferenças e semelhança se chega a outro processo, a classificação.
Classificar é separar objetos, pessoas e idéias em categorias de acordo com características percebidas por meio de semelhanças ou diferenças. A classificação deve ocorrer de maneira espontânea. Não há resposta correta ou errada, todas estarão corretas segundo a lógica quem está classificando.
Na conservação a criança percebe que a quantidade não depende da arrumação, forma ou posição dos objetos. De modo geral, as crianças só estabelecem essa relação, a conservação, no período das operações concretas.
A correspondência biunívoca, também chamada correspondência um a um, diz que cada elemento do primeiro conjunto deverá corresponder a apenas um elemento do segundo conjunto.
Segundo Jean Piaget, o número é uma síntese de dois esquemas mentais básicos, a ordenação e a inclusão hierárquica. Ordem é a relação que a criança elabora ao contar um determinado número de elementos, sem saltar ou repetir algum; ordenação é a Sequenciação de objetos segundo uma ordem direta e linear de grandeza, ou seja, segundo uma ordem crescente ou decrescente, maior ou menor, etc.
Na inclusão hierárquica a criança consegue quantificar os objetos como um grupo. Ao contar, ela nos apontará um número para representar todo o grupo e não apenas o último elemento.
A seriação tem papel fundamental na construção de conhecimento matemático. Seqüenciar é fazer suceder, a cada elemento, outro, sem levar em conta a ordem linear de grandezadesses elementos.

Historia da Matematica



Por volta dos séculos IX e VIII a.C a matemática engatinhava na Babilônia. Os babilônios e os egípcios já tinham uma álgebra e uma geometria, mas somente o que bastasse para as suas necessidades práticas, e não de uma ciência organizada. Na Babilônia, a matemática era cultivada entre os escrivas responsáveis pelos tesouros reais. Apesar de todo material algébrico que tinham os babilônios e egípcios, só podemos encarar a matemática como ciência, no sentido moderno da palavra, a partir dos séculos VI e V a.C. na Grécia.
     A matemática grega se distingue da babilônica e egípcia pela maneira de encará-la. Os gregos fizeram-na uma ciência propriamente dita sem a preocupação de suas aplicações práticas.
     Do ponto de vista de estrutura, a matemática grega se distingue da anterior, por ter levado em conta problemas relacionados com processos infinitos, movimento e continuidade. As diversas tentativas dos gregos de resolverem tais problemas fizeram com que aparecesse o método axiomático-dedutivo. Este método consiste em admitir como verdadeiras certas preposições (mais ou menos evidentes) e a partir delas, por meio de um encadeamento lógico, chegar a proposições mais gerais. As dificuldades com que os gregos depararam ao estudar os problemas relativos a processos infinitos (sobretudo problemas sobre números irracionais) talvez sejam as causas que os desviaram da álgebra, encaminhando-os em direção à geometria. Realmente, é na geometria que os gregos se destacam, culminando com a obra de Euclides, intitulada "Os Elementos". Sucedendo Euclides, encontramos os trabalhos de Arquimedes e de Apolônio de Perga.
     Arquimedes desenvolve a geometria, introduzindo um novo método, denominado "método de exaustão", que seria um verdadeiro germe do qual mais tarde iria brotar um importante ramo de matemática (teoria dos limites). Apolônio de Perga, contemporâneo de Arquimedes, dá início aos estudos das denominadas curvas cônicas: a elipse, a parábola, e a hipérbole, que desempenham, na matemática atual, papel muito importante. No tempo de Apolônio e Arquimedes, a Grécia já deixara de ser o centro cultural do mundo. Este, por meio das conquistas de Alexandre, tinha-se transferido para a cidade de Alexandria. Depois de Apolônio e Arquimedes, a matemática grega entra no seu ocaso.
     Dia dez de dezembro de 641, cai a cidade de Alexandria sob a verde bandeira de Alá. Os exércitos árabes, então empenhados na chamada Guerra Santa, ocupam e destroem a cidade, e com ela todas as obras dos gregos. A ciência dos gregos entra em eclipse. Mas a cultura helênica era bem forte para sucumbir de um só golpe; daí por diante a matemática entra num estado latente. Os árabes, na sua arremetida, conquistam a Índia encontrando lá um outro tipo de cultura matemática: a Álgebra e a Aritmética.
     Os hindus introduzem um símbolo completamente novo no sistema de numeração até então conhecido: o ZERO. Isto causa uma verdadeira revolução na "arte de calcular". Dá-se início à propagação da cultura dos hindus por meio dos árabes. Estes levam à Europa os denominados "Algarismos arábicos", de invenção dos hindus. Um dos maiores propagadores da matemática nesse tempo foi, sem dúvida, o árabe Mohamed Ibn Musa Alchwarizmi, de cujo nome resultou em nossa língua as palavras algarismos e Algoritmo.
     Alchwarizmi propaga a sua obra, "Aldschebr Walmakabala", que ao pé da letra seria: restauração e conforto. (É dessa obra que se origina o nome Álgebra). A matemática, que se achava em estado latente, começa a se despertar. No ano 1202, o matemático italiano Leonardo de Pisa, cognominado de "Fibonacci" ressuscita a Matemática na sua obra intitulada "Leber abaci" na qual descreve a "arte de calcular" (Aritmética e Álgebra). Nesse livro Leonardo apresenta soluções de equações do 1º, 2º e 3º graus. Nessa época a Álgebra começa a tomar o seu sapecto formal. Um monge alemão. Jordanus Nemorarius já começa a utilizar letras para significar um número qualquer, e ademais introduz os sinais de + (mais) e - (menos) sob a forma das letras p (plus = mais) e m (minus = menos).
     Outro matemático alemão, Michael Stifel, passa a utilizar os sinais de mais (+) e menos (-), como nós os utilizamos atualmente. É a álgebra que nasce e se põe em franco desenvolvimento. Tal desenvolvimento é finalmente consolidado na obra do matemático francês, François Viète, denominada "Álgebra Speciosa". Nela os símbolos alfabéticos têm uma significação geral, podendo designar números, segmentos de retas, entes geométricos etc.
 No século XVII, a matemática toma nova forma, destacando-se de início René Descartes e Pierre Fermat. A grande descoberta de René Descartes foi sem dúvida a "Geometria Analítica" que, em síntese, consiste nas aplicações de métodos algébricos à geometria. Pierre Fermat era um advogado que nas horas de lazer se ocupava com a matemática. Desenvolveu a teoria dos números primos e resolveu o importante problema do traçado de uma tangente a uma curva plana qualquer, lançando assim, sementes para o que mais tarde se iria chamar, em matemática, teoria dos máximos e mínimos. Vemos assim no século XVII começar a germinar um dos mais importantes ramos da matemática, conhecido como Análise Matemática. Ainda surgem, nessa época, problemas de Física: o estudo do movimento de um corpo, já anteriormente estudados por Galileu Galilei. Tais problemas dão origens a um dos primeiros descendentes da Análise: o Cálculo Diferencial.
     O Cálculo Diferencial aparece pela primeira vez nas mãos de Isaac Newton (1643-1727), sob o nome de "cálculo das fluxões", sendo mais tarde redescoberto independentemente pelo matemático alemão Gottfried Wihelm Leibniz. A Geometria Analítica e o Cálculo dão um grande impulso à matemática. Seduzidos por essas novas teorias, os matemáticos dos séculos XVII e XVIII, corajosa e despreocupadamente se lançam a elaborar novas teorias analíticas. Mas nesse ímpeto, eles se deixaram levar mais pela intuição do que por uma atitude racional no desenvolvimento da ciência. Não tardaram as consequências de tais procedimentos, começando por aparecer contradições. Um exemplo clássico disso é o caso das somas infinitas, como a soma abaixo:
     S = 3 - 3 + 3 - 3 + 3...........
     Supondo que se tenha um número infinito de termos. Se agruparmos as parcelas vizinhas teremos:
     S = (3 - 3) + (3 - 3) + ...........= 0 + 0 +.........= 0
     Se agruparmos as parcelas vizinhas, mas a partir da 2ª, não agrupando a primeira:
     S = 3 + ( - 3 + 3) + ( - 3 + 3) + ...........= 3 + 0 + 0 + ......... = 3
     O que conduz a resultados contraditórios. Esse "descuido" ao trabalhar com séries infinitas era bem característico dos matemáticos daquela época, que se acharam então em um "beco sem saída”. Tais fatos levaram, no ocaso do século XVIII, a uma atitude crítica de revisão dos fatos fundamentais da matemática. Pode-se afirmar que tal revisão foi a "pedra angular" da matemática. Essa revisão se inicia na Análise, com o matemático francês Louis Cauchy (1789 - 1857), professor catedrático na Faculdade de Ciências de Paris. Cauchy realizou notáveis trabalhos, deixando mais de 500 obras escritas, das quais destacamos duas na Análise: "Notas sobre o desenvolvimento de funções em séries" e "Lições sobre aplicação do cálculo à geometria". Paralelamente, surgem geometrias diferentes da de Euclides, as denominadas Geometrias não euclidianas.
     Por volta de 1900, o método axiomático e a Geometria sofrem a influência dessa atitude de revisão crítica, levada a efeito por muitos matemáticos, dentre os quais destacamos D. Hilbert, com sua obra "Fundamentos da Geometria" ("Grudlagen der Geometrie" título do original), publicada em 1901. A Álgebra e a Aritmética tomam novos impulsos. Um problema que preocupava os matemáticos era o da possibilidade ou não da solução de equações algébricas por meio de fórmulas que aparecessem com radicais. Já se sabia que em equações do 2º e 3º graus isto era possível; daí surgiu a seguinte questão: será que as equações do 4º graus em diante admitem soluções por meio de radicais?
     Em trabalhos publicados por volta de 1770, Lagrange (1736 - 1813) e Vandermonde (1735-96) iniciaram estudos sistemáticos dos métodos de resolução. À medida que as pesquisas se desenvolviam no sentido de achar tal tipo de resolução, ia se evidenciando que isso não era possível. No primeiro terço do século XIX, Niels Abel (1802-29) e Evariste de Galois (1811-32) resolvem o problema, demonstrando que as equações do quarto e quinto grau em diante não podiam ser resolvidas por radicais. O trabalho de Galois, somente publicado em 1846, deu origem à chamada "teoria dos grupos" e à denominada "Álgebra Moderna", dando também grande impulso à teoria dos números.
     Com respeito à teoria dos números não nos podemos esquecer das obras de R. Dedekind e Gorg Cantor. R. Dedekind define os números irracionais pela famosa noção de "Corte". Georg Cantor dá início à chamada Teoria dos conjuntos, e de maneira arrojada aborda a noção de infinito, revolucionando-a. A partir do século XIX a matemática começa então a se ramificar em diversas disciplinas, que ficam cada vez mais abstratas.
    Atualmente se desenvolvem tais teorias abstratas, que se subdividem em outras disciplinas. Os entendidos afirmam que estamos em plena "idade de ouro" da Matemática, e que nestes últimos cinquenta anos tem se criado tantas disciplinas, novas matemáticas, como se haviam criado nos séculos anteriores. Esta arremetida em direção ao "Abstrato", ainda que não pareça nada prática, tem por finalidade levar adiante a "Ciência". A história tem mostrado que aquilo que nos parece pura abstração, pura fantasia matemática, mais tarde se revela como um verdadeiro celeiro de aplicações práticas.
Construindo o conceito de número
Foi contando objetos com outros objetos que a humanidade começou a construir o conceito de número.
Para o homem primitivo o número cinco, por exemplo, sempre estaria ligada a alguma coisa concreta: cinco dedos, cinco peixes, cinco bastões, cinco animais, e assim por diante.
A ideia de contagem estava relacionada com os dedos da mão.
Assim, ao contar as ovelhas, o pastor separava as pedras em grupos de cinco.
Do mesmo modo os caçadores contavam os animais abatidos, traçando riscos na madeira ou fazendo nós em uma corda, também de cinco em cinco.
Para nós, hoje, o número cinco representa a propriedade comum de infinitas coleções de objetos: representa a quantidade de elementos de um conjunto, não importando se tratam de cinco bolas, cinco skates, cinco discos ou cinco aparelhos de som.
É por isso que esse número, que surgiu quando o homem contava objetos usando outros objetos, é um número concreto.
O número natural
Os egípcios criam os símbolos
Por volta do ano 4.000 a.C., algumas comunidades primitivas aprenderam a usar ferramentas e armas de bronze. Aldeias situadas às margens de rios transformaram-se em cidades. A vida ia ficando cada vez mais complexa. Novas atividades iam surgindo, graças, sobretudo ao desenvolvimento do comércio.
Os agricultores passaram a produzir alimentos em quantidades superiores às suas necessidades. Com isso algumas pessoas puderam se dedicar a outras atividades, tornando-se artesãos, comerciantes, sacerdotes, administradores.
Como consequência desse desenvolvimento surgiu à escrita. Era o fim da Pré-História e o começo da História.
Os grandes progressos que marcaram o fim da Pré-História verificaram-se com muita intensidade e rapidez no Egito.
Você certamente já ouviu falar nas pirâmides do Egito.
Para fazer os projetos de construção das pirâmides e dos templos, o número concreto não era nada prático. Ele também não ajudava muito na resolução dos difíceis problemas criados pelo desenvolvimento da indústria e do comércio.
Como efetuar cálculos rápidos e precisos com pedras, nós ou riscos em um osso?
Foi partindo dessa necessidade imediata que estudiosos do Antigo Egito passaram a representar a quantidade de objetos de uma coleção através de desenhos – os símbolos.
A criação dos símbolos foi um passo muito importante para o desenvolvimento da Matemática.
Na Pré-História, o homem juntava 3 bastões com 5 bastões para obter 8 bastões.
Hoje sabemos representar esta operação por meio de símbolos.
3 + 5 = 8
Muitas vezes não sabemos nem que objetos estamos somando. Mas isso não importa: a operação pode ser feita da mesma maneira. Mas como eram os símbolos que os egípcios criaram para representar os números?
Contando com os egípcios
Há mais ou menos 3.600 anos, o faraó do Egito tinha um súdito chamado Aahmesu, cujo nome significa “Filho da Lua”.
Aahmesu ocupava na sociedade egípcia uma posição muito mais humilde que a do faraó: provavelmente era um escriba. Hoje Aahmesu é mais conhecido do que muitos faraós e reis do Antigo Egito. Entre os cientistas, ele é chamado de Ahmes. Foi ele quem escreveu o Papiro Ahmes.
O papiro Ahmes é um antigo manual de matemática. Contêm 80 problemas, todos resolvidos. A maioria envolvendo assuntos do dia-a-dia, como o preço do pão, a armazenagem de grãos de trigo, a alimentação do gado.
Observando e estudando como eram efetuados os cálculos no Papiro Ahmes, não foi difícil aos cientistas compreender o sistema de numeração egípcio. Além disso, a decifração dos hieróglifos – inscrições sagradas das tumbas e monumentos do Egito – no século XVIII também foi muito útil.
O sistema de numeração egípcio baseava-se em sete números-chave:
1 10 100 1.000 10.000
100.000 1.000.000
Os egípcios usavam símbolos para representar esses números.
Um traço vertical representava 1 unidade:
Um osso de calcanhar invertido representava o número 10:
Um laço valia 100 unidades:
Uma flor de lótus valia 1.000:
Um dedo dobrado valia 10.000:
Com um girino os egípcios representavam 100.000 unidades:
Uma figura ajoelhada, talvez representando um deus, valia 1.000.000:
Todos os outros números eram escritos combinando os números-chave.
Na escrita dos números que usamos atualmente, a ordem dos algarismos é muito importante.
Se tomarmos um número, como por exemplo:
256
e trocarmos os algarismos de lugar, vamos obter outros números completamente diferentes:
265 526 562 625 652
Ao escrever os números, os egípcios não se preocupavam com a ordem dos símbolos. Observe no desenho que apesar de a ordem dos símbolos não ser a mesma, os três garotos do Antigo Egito estão escrevendo o mesmo número:
45
Os papiros da Matemática egípcia
Quase tudo o que sabemos sobre a Matemática dos antigos egípcios se baseia em dois grandes papiros: o Papiro Ahmes e o Papiro de Moscou.
O primeiro foi escrito por volta de 1.650 a.C. e tem aproximadamente 5,5 m de comprimento e 32 cm de largura. Foi comprado em 1.858 por um antiquário escocês chamado Henry Rhind. Por isso é conhecido também como Papiro de Rhind. Atualmente encontra-se no British Museum, de Londres.
O Papiro de Moscou é uma estreita tira de 5,5 m de comprimento por 8 cm de largura, com 25 problemas. Encontra-se atualmente em Moscou. Não se sabe nada sobre o seu autor.
A técnica de calcular dos egípcios
Com a ajuda deste sistema de numeração, os egípcios conseguiam efetuar todos os cálculos que envolviam números inteiros.
Para isso, empregavam uma técnica de cálculo muito especial: todas as operações matemáticas eram efetuadas através de uma adição.
Por exemplo, a multiplicação 13 * 9 indicava que o 9 deveria ser adicionado treze vezes.
13 * 9 = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9
A tabela abaixo ajuda a compreender como os egípcios concluíam a muliplicação:
Eles buscavam na tabela um total de 13 parcelas; era simplesmente a soma das três colunas destacadas:
1 + 4 + 8 = 13
O resultado da multiplicação 13 * 9 era a soma dos resultados desta três colunas:
9 + 36 + 72 = 117
Os egípcios eram realmente muito habilidosos e criativos nos cálculos com números inteiros.
Mas, em muitos problemas práticos, eles sentiam necessidades de expressar um pedaço de alguma coisa através de um número.
E para isso os números inteiros não serviam.
Descobrindo a fração
Por volta do ano 3.000 a.C., um antigo faraó de nome Sesóstris...
“... repartiu o solo do Egito às margens do rio Nilo entre seus habitantes. Se o rio levava qualquer parte do lote de um homem, o faraó mandava funcionários examinarem e determinarem por medida a extensão exata da perda.”
Estas palavras foram escritas pelo historiador grego Heródoto, há cerca de 2.300 anos. O rio Nilo atravessa uma vasta planície.
Uma vez por ano, na época das cheias, as águas do Nilo sobem muitos metros acima de seu leito normal, inundando uma vasta região ao longo de suas margens. Quando as águas baixam, deixam descobertas uma estreita faixa de terras férteis, prontas para o cultivo. Desde a Antiguidade, as águas do Nilo fertilizam os campos, beneficiando a agricultura do Egito. Foi nas terras férteis do vale deste rio que se desenvolveu a civilização egípcia. Cada metro de terra era precioso e tinha de ser muito bem cuidado.
Sesóstris repartiu estas preciosas terras entre uns poucos agricultores privilegiados.
Todos os anos, durante o mês de junho, o nível das águas do Nilo começava a subir. Era o início da inundação, que durava até setembro.
Ao avançar sobre as margens, o rio derrubava as cercas de pedra que cada agricultor usava par marcar os limites do terreno de cada agricultor.
Usavam cordas para fazer a medição.
Havia uma unidade de medida assinada na própria corda. As pessoas encarregadas de medir esticavam a corda e verificavam quantas vezes aquela unidade de medida estava contida nos lados do terreno. Daí, serem conhecidas como esticadores de cordas.
No entanto, por mais adequada que fosse a unidade de medida escolhida, dificilmente cabia um número inteiro de vezes no lados do terreno.
Foi por essa razão que os egípcios criaram um novo tipo de número: o número fracionário.
Para representar os números fracionários, usavam frações.
As complicadas frações egípcias
Os egípcios interpretavam a fração somente como uma parte da unidade. Por isso, utilizavam apenas as frações unitárias, isto é, com numerador igual a 1.
Para escrever as frações unitárias, colocavam um sinal oval alongado sobre o denominador.
As outras frações eram expressas através de uma soma de frações de numerador 1.
Os egípcios não colocavam o sinal de adição - + - entre as frações, porque os símbolos das operações ainda não tinham sido inventados.
No sistema de numeração egípcio, os símbolos repetiam-se com muita frequência. Por isso, tanto os cálculos com números inteiros quanto aqueles que envolviam números fracionários eram muito complicados.
Assim como os egípcios, outros povos também criaram o seu próprio sistema de numeração. Porém, na hora de efetuar os cálculos, em qualquer um dos sistemas empregados, as pessoas sempre esbarravam em alguma dificuldade.
Apenas por volta do século III a.C. começou a se formar um sistema de numeração bem mais prático e eficiente do que os outros criados até então: o sistema de numeração romano.
Contando com os romanos
De todas as civilizações da Antiguidade, a dos romanos foi sem dúvida a mais importante.
Seu centro era a cidade de Roma. Desde sua fundação, em 753 a.C., até ser ocupada por povos estrangeiros em 476 d.C., seus habitantes enfrentaram um número incalculável de guerras de todos os tipos. Inicialmente, para se defenderem dos ataques de povos vizinhos; mais tarde nas campanhas de conquistas de novos territórios.
Foi assim que, pouco a pouco, os romanos foram conquistando a península Itálica e o restante da Europa, além de uma parte da Ásia e o norte de África.
Apesar de a maioria da população viver na miséria, em Roma havia luxo e muita riqueza, usufruídas por uma minoria rica e poderosa. Roupas luxuosas, comidas finas e festas grandiosas faziam parte do dia-a-dia da elite romana.
Foi nesta Roma de miséria e luxo que se desenvolveu e aperfeiçoou o número concreto, que vinha sendo usado desde a época das cavernas.
Como foi que os romanos conseguiram isso?
O sistema de numeração romano
Os romanos foram espertos. Eles não inventaram símbolos novos para representar os números; usaram as próprias letras do alfabeto.
I V X L
C D M
Como será que eles combinaram estes símbolos para formar o seu sistema de numeração?
O sistema de numeração romano baseava-se em sete números-chave:
I tinha o valor 1.
V valia 5.
X representava 10 unidades.
L indicava 50 unidades.
C valia 100.
D valia 500.
M valia 1.000.
Quando apareciam vários números iguais juntos, os romanos somavam os seus valores.
II = 1 + 1 = 2
XX = 10 + 10 = 20
XXX = 10 + 10 + 10 = 30
Quando dois números diferentes vinham juntos, e o menor vinha antes do maior, subtraíam os seus valores.
IV = 4 porque 5 - 1 = 4
IX = 9 porque 10 – 1 = 9
XC = 90 porque 100 – 10 = 90
Mas se o número maior vinha antes do menor, eles somavam os seus valores.
VI = 6 porque 5 + 1 = 6
XXV = 25 porque 20 + 5 = 25
XXXVI = 36 porque 30 + 5 + 1 = 36
LX = 60 porque 50 + 10 = 60
Ao lermos o cartaz, ficamos sabendo que o exercito de Roma fez numa certa época MCDV prisioneiros de guerra. Para ler um número como MCDV, veja os cálculos que os romanos faziam:
Em primeiro lugar buscavam a letra de maior valor.
M = 1.000
Como antes de M não tinha nenhuma letra, buscavam a segunda letra de maior valor.
D = 500
Depois tirava de D o valor da letra que vem antes.
D – C = 500 – 100 = 400
Somavam 400 ao valor de M, porque CD está depois e M.
M + CD = 1.000 + 400 = 1.400
Sobrava apenas o V. Então:
MCDV = 1.400 + 5= 1.405
Os milhares
Como você acabou de ver, o número 1.000 era representado pela letra M.
Assim, MM correspondiam a 2.000 e MMM a 3.000.
E os números maiores que 3.000?
Para escrever 4.000 ou números maiores que ele, os romanos usavam um traço horizontal sobre as letras que representavam esses números.
Um traço multiplicava o número representado abaixo dele por 1.000.
Dois traços sobre o M davam-lhe o valor de 1 milhão.
O sistema de numeração romano foi adotado por muitos povos. Mas ainda era difícil efetuar cálculos com este sistema.
Por isso, matemáticos de todo o mundo continuaram a procurar intensamente símbolos mais simples e mais apropriados para representar os números.
E como resultado dessas pesquisas, aconteceu na Índia uma das mais notáveis invenções de toda a história da Matemática: O sistema de numeração decimal.
Afinal os nossos números
No século VI foram fundados na Síria alguns centros de cultura grega. Consistiam numa espécie de clube onde os sócios se reuniam para discutir exclusivamente a arte e a cultura vindas da Grécia.
Ao participar de uma conferência num destes clubes, em 662, o bispo sírio Severus Sebokt, profundamente irritado com o fato de as pessoas elogiarem qualquer coisa vinda dos gregos, explodiu dizendo:
“Existem outros povos que também sabem alguma coisa! Os hindus, por exemplo, têm valiosos métodos de cálculos. São métodos fantásticos! E imaginem que os cálculos são feitos por apenas nove sinais!”.
A referência a nove, e não dez símbolos significam que o passo mais importante dado pelos hindus para formar o seu sistema de numeração – a invenção do zero - ainda não tinha chegado ao Ocidente.
A ideia dos hindus de introduzir uma notação para uma posição vazia – um ovo de ganso, redondo – ocorreu na Índia, no fim do século VI. Mas foram necessários muitos séculos para que esse símbolo chegasse à Europa.
Com a introdução do décimo sinal – o zero – o sistema de numeração tal qual o conhecemos hoje estava completo.
Até chegar aos números que você aprendeu a ler e escrever, os símbolos criados pelos hindus mudou bastante.
Hoje, estes símbolos são chamados de algarismos indos-arábicos.
Se forem os matemáticos hindus que inventaram o nosso sistema de numeração, o que os árabes têm a ver com isso? E por que os símbolos
0 1 2 3 4 5 6 7 8 9
São chamados de algarismos?
Os árabes divulgam ao mundo os números hindus
Simbad, o marujo, Aladim e sua lâmpada maravilhosa, Harum al-Raschid são nomes familiares para quem conhece os contos de As mil e uma noites. Mas Simbad e Aladim são apenas personagens do livro, Harum al-Raschid realmente existiu. Foi o califa de Bagdá, do ano 786 até 809.
Durante o seu reinado os povos árabes travaram uma séria de guerras de conquista. E como prêmios de guerra, livros de diversos centros científicos foram levados para Bagdá e traduzidos para a língua árabe.
Em 809, o califa de Bagdá passou a ser al-Mamum, filho de Harum al-Rahchid.
Al-Mamum era muito vaidoso. Dizia com toda a convicção.
“Não há ninguém mais culto em todos os ramos do saber do que eu”.
Como era um apaixonado da ciência, o califa procurou tornar Bagdá o maior centro científico do mundo, contratando os grandes sábios muçulmanos da época.
Entre eles estava o mais brilhante matemático árabe de todos os tempos: al-Khowarizmi.
Estudando os livros de Matemática vindos da Índia e traduzidos para a língua árabe, al-Khowarizmi surpreendeu-se a princípio com aqueles estranhos símbolos que incluíam um ovo de ganso!
Logo, al-Khowarizmi compreendeu o tesouro que os matemáticos hindus haviam descobertos. Com aquele sistema de numeração, todos os cálculos seriam feitos de um modo mais rápido e seguro. Era impossível imaginar a enorme importância que essa descoberta teria para o desenvolvimento da Matemática.
Al-Khowarizmi decidiu contar ao mundo as boas nova. Escreveu um livro chamado Sobre a arte hindu de calcular, explicando com detalhes como funcionavam os dez símbolos hindus.
Com o livro de al-Khowarizmi, matemáticos do mundo todo tomaram conhecimento do sistema de numeração hindu.
Os símbolos – 0 1 2 3 4 5 6 7 8 9 – ficaram conhecidos como a notação de al-Khowarizmi, de onde se originou o termo latino algorismus. Daí o nome algarismo.
São estes números criados pelos matemáticos da Índia e divulgados para outros povos pelo árabe al-Khowarizmi que constituem o nosso sistema de numeração decimal conhecido como algarismo indos-arábicos.
Os números racionais
Com o sistema de numeração hindu ficou fácil escrever qualquer número, por maior que ele fosse.
0 13 35 98
1.024 3.645.872
Como estes números foram criados pela necessidade prática de contar as coisas da natureza, eles são chamados de números naturais.
Os números naturais simplificaram muito o trabalho com números fracionários.
Não havia mais necessidade de escrever um número fracionário por meio de uma adição de dois fracionários, como faziam os matemáticos egípcios.
O número fracionário passou a ser escrito como uma razão de dois números naturais.
A palavra razão em matemática significa divisão. Portanto, os números inteiros e os números fracionários podem ser expressos como uma razão de dois números naturais. Por isso, são chamados de números racionais.
A descoberta de números racionais foi um grande passo para o desenvolvimento da Matemática.























Fonte:usuários.upf.br

A História do Ábaco

Cada bastão contém bolas móveis, que podem ser movidas para cima e para baixo. Assim, de acordo com o número de bolas na posição inferior, temos um valor representado. Pode haver variações, como na figura ao lado, onde se fazem divisões na moldura e o número de bolas é alterado. Observe que na figura temos o número 6302715408 (por exemplo 8=5+3, com a parte superior representando múltiplos de 5, neste caso 0, 5 e 10).
Estrutura com hastes metálicas divididas em duas partes, das quais uma tem duas contas e a outra, cinco contas, que deslizam nessas hastes. Os ábacos orientais dispõem de varas verticais divididas em dois, com as contas sobre a barra tendo o valor cinco vezes superior aos das contas abaixo. O suanpan chinês dispõe de duas contas acima da barra ou divisor e cinco abaixo. O moderno soroban japonês por outro lado, tem uma conta acima e quatro abaixo do divisor.
Algumas hastes podem ser reservadas pelo operador para armazenar resultados intermediários. Desta forma, poucas guias são necessárias, já que o ábaco é usado mais como um reforço de memória enquanto o usuário faz as contas de cabeça.
Exemplo de cálculo
O cálculo começa à esquerda, ou na coluna mais alta envolvida em seu cálculo, e trabalha da esquerda para a direita. Assim, se tiver 548 e desejar somar 637, primeiro colocará 548 na calculadora. Daí, adiciona 6 ao 5. Segue a regra ou padrão 6 = 10 - 4 por remover o 5 na vara das centenas e adicionar 1 na mesma vara (-5 + 1 = -4) daí, adicione uma das contas de milhares à vara à esquerda. Daí, passa a somar o três ao quatro, o sete ao oito, e no ábaco aparecerá a resposta: 1.185.
Devido a operar assim, da esquerda para a direita, pode começar seu cálculo assim que saiba o primeiro dígito. Na aritmética mental ou escrita, calcula a partir das unidades ou do lado direito do problema.
História

Figura de um ábaco usado na Idade Média.
O ábaco é um antigo instrumento de cálculo, que segundo muitos historiadores foi inventado na Mesopotâmia, pelo menos em sua forma primitiva e depois os chineses e romanos o aperfeiçoaram.
Daí, uma variedade de ábacos foram desenvolvidos; o mais popular utiliza uma combinação de dois números-base (2 e 5) para representar números decimais. Mas os mais antigos ábacos usados primeiro na Mesopotâmia e depois na Grécia e no Egipto por escrivães usavam números sexagesimais representados por factores de 5, 2, 3 e 2 por cada dígito.
A palavra ábaco originou-se do Latim abacus, e esta veio do grego abakos. Esta era um derivado da forma genitiva abax (lit. tábua de cálculos). Porque abax tinha também o sentido de tábua polvilhada com terra ou pó, utilizada para fazer figuras geométricas, alguns linguistas especulam que tenha vindo de uma língua semítica (o púnico abakareia, ou o hebreu ābāq (pronunciado a-vak),areia).

Figura da disputa entre um abacista versus um algorista por Latim abacus. O plural do inglêsabacus é controverso, mas abacuses  eabaci estão em uso.
Ábaco mesopotâmico
O primeiro ábaco foi quase de certeza construído numa pedra lisa coberta por areia ou pó. Palavras e letras eram desenhadas na areia; números eram eventualmente adicionados e bolas de pedra eram utilizadas para ajuda nos cálculos. Os babilóniosutilizavam este ábaco em 2700–2300 a.C.. A origem do ábaco de contar com bastões é obscuro, mas a Índia, aMesopotâmia ou o Egito são vistos como prováveis pontos de origem.A China desempenhou um papel importante no desenvolvimento do ábaco.
Ábaco babilónio
Os babilónios podem ter utilizado o ábaco para operações de adição e subtracção. No entanto, este dispositivo primitivo provou ser difícil para a utilização em cálculos mais complexos.[6] Algumas pessoas conhecem um caracter do alfabeto cuneiforme babilónio que pode ter sido derivado de uma representação do ábaco.[7] Por isso esse ábaco é muito importante.
Ábaco egípcio
O uso do ábaco no antigo Egito é mencionado pelo historiador grego Crabertotous, que escreve sobre a maneira do uso de discos (ábacos) pelos egípcios, que era oposta na direção quando comparada com o método grego. Arqueologistas encontraram discos antigos de vários tamanhos que se pensam terem sido usados como material de cálculo. No entanto, pinturas de parede não foram descobertas, espalhando algumas dúvidas sobre a intenção de uso deste instrumento.
Ábaco grego
Uma tábua encontrada na ilha grega de Salamina em 1846 data de 300 a.C., fazendo deste o mais velho ábaco descoberto até agora. É um ábaco de mármore de 149 cm de comprimento, 75 cm de largura e de 4,5 cm de espessura, no qual existem 5 grupos de marcações. No centro da tábua existe um conjunto de 5 linhas paralelas igualmente divididas por uma linha vertical, tampada por um semicírculo na intersecção da linha horizontal mais ao canto e a linha vertical única. Debaixo destas linhas, existe um espaço largo com uma rachadura horizontal a dividi-los. Abaixo desta rachadura, existe outro grupo de onze linhas paralelas, divididas em duas secções por uma linha perpendicular a elas, mas com o semicírculo no topo da intersecção; a terceira, sexta e nona linhas estão marcadas com uma cruz onde se intersectam com a linha vertical.
Ábaco romano

Ábaco romano reconstruído.
O método normal de cálculo na Roma antiga, assim como na Grécia antiga, era mover bolas de contagem numa tábua própria para o efeito. As bolas de contagem originais denominavam-se calculi. Mais tarde, e na Europa medieval, os jetons começaram a ser manufacturados. Linhas marcadas indicavam unidades, meias dezenas, dezenas, etc., como na numeração romana. O sistema de contagem contrária continuou até à queda de Roma, assim como na Idade Média e até ao século XIX, embora já com uma utilização mais limitada.
Em adição às mais utilizadas bolas de contagem frouxas, vários espécimens de um ábaco romano foram encontrados, mostrados aqui em reconstrução. Tem oito longos sulcos contendo até 5 bolas em cada e 8 sulcos menores tendo tanto uma como nenhuma bola.
Nos sulcos menores, o sulco marcado I marca unidades, o X dezenas e assim sucessivamente até aos milhões. As bolas nos sulcos menores marcam os cincos - cinco unidades, cinco dezenas, etc. - essencialmente baseado na numeração romana. As duas últimas colunas de sulcos serviam para marcar as subdivisões da unidade monetária. Temos de ter em conta que a unidade monetária se subdividia em 12 partes, o que implica que o sulco longo marcado com o sinal 0(representando os múltiplos da onça ou duodécimos da unidade monetária) comporte um máximo de 5 botões, valendo cada uma 1 onça, e que o botão superior valha 6 onças. Os sulcos mais pequenos à direita são fracções da onça romana sendo respectivamente, de cima para baixo, ½ onça, ¼ onça e ⅓ onça.
Ábaco indiano
Fontes do século I, como a Abhidharmakosa, descrevem a sabedoria e o uso do ábaco na Índia. Por volta do século V, escrivães indianos estavam já à procura de gravar os resultados do Ábaco. Textos hindus usavam o termo shunya (zero) para indicar a coluna vazia no ábaco.
Ábaco chinês
Suanpan (o número representado na figura é 6.302.715.408).
A menção mais antiga a um suanpan (ábaco chinês) é encontrada num livro do século I da Dinastia Han Oriental, o Notas Suplementares na Arte das Figuras escrito por Xu Yue.No entanto, o aspecto exacto deste suanpan é desconhecido.
Habitualmente, um suanpan tem cerca de 20 cm de altura e vem em variadas larguras, dependendo do fabricante. Tem habitualmente mais de sete hastes. Existem duas bolas em cada haste na parte de cima e cinco na parte de baixo, para números decimais ehexadecimais. Ábacos mais modernos tem uma bola na parte de cima e quatro na parte de baixo. As bolas são habitualmente redondas e feitas em madeira. As bolas são contadas por serem movidas para cima ou para baixo. Se as mover para o alto, conta-lhes o valor; se não, não lhes conta o valor. O suanpan pode voltar à posição inicial instantaneamente por um pequeno agitar ao longo do eixo horizontal para afastar todas as peças do centro.
Os suanpans podem ser utilizados para outras funções que não contar. Ao contrário do simples ábaco utilizado nas escolas, muitas técnicas eficientes para o suanpan foram feitas para calcular operações que utilizam a multiplicação, a divisão, a adição, a subtracção, a raiz quadrada e a raiz cúbica a uma alta velocidade.
No famoso quadro Cenas à Beira-mar no Festival de Qingming pintado por Zhang Zeduan (1085-1145) durante a Dinastia Song (960-1297), um suanpan é claramente visto ao lado de um livro de encargos e de prescrições do doutor na secretária de um apotecário.
A similaridade do ábaco romano com o suanpan sugere que um pode ter inspirado o outro, pois existem evidências de relações comerciais entre o Império Romano e a China. No entanto, nenhuma ligação directa é passível de ser demonstrada, e a similaridade dos ábacos pode bem ser concidência, ambos derivando da contagem de cinco dedos por mão. Onde o modelo romano tem 4 mais 1 bolas por espaço decimal, o suanpan padrão tem 5 mais 2, podendo ser utilizado com números hexadecimais, ao contrário do romano. Em vez de funcionar em cordas como os modelos chinês e japonês, o ábaco romano funciona em sulcos, provavelmente fazendo os cálculos mais difíceis.
Outra fonte provável do suanpan são as pirâmides numéricas chinesas, que operavam com o sistema decimal mas não incluiam o conceito de zero. O zero foi provavelmente introduzido aos chineses na Dinastia Tang (618-907), quando as viagens no Oceano Índico e no Médio Oriente teriam dado contacto directo com a Índia e o Islão, permitindo-lhes saber o conceito de zero e do ponto decimal de mercantes e matemáticos indianos e islâmicos.
suanpan migrou da China para a Coreia em cerca do ano 1400. Os coreanos chamam-lhe jupan (주판), supan (수판) or jusan (주산).[14]
Ábaco japonês
Soroban japonês.
Um soroban (算盤, そろばん, lit. tábua de contar) é uma versão modificada pelos japoneses do suanpan. É planeado do suanpan, importado para o Japão antes do século XVI.[15] No entanto, a idade de transmissão exacta e o meio são incertos porque não existem registos específicos.[16][17] Como osuanpan, o soroban ainda hoje é utilizado no Japão, apesar da proliferação das calculadoras de bolso, mais baratas.
A Coreia tem também o seu próprio, o supan (수판), que é basicamente o soroban antes de tomar a sua actul forma nos anos 30. O soroban moderno também tem este nome.[18]
Ábacos dos nativos americanos
Representação de um quipu Inca.
Algumas fontes mencionam o uso de um ábaco chamado nepohualtzintzin na antiga cultura azteca. Este ábaco mesoamericano utiliza um sistema de base 20 com 5 dígitos.
quipu dos Incas era um sistema de cordas atadas usado para gravar dados numéricos, como varas de registo avançadas - mas não eram usadas para fazer cálculos. Os cálculos eram feitos utilizando uma yupana (quechua para tábua de contar), que estava ainda em uso depois da conquista do Peru. O princípio de trabalho de uma yupana é desconhecido, mas, em 2001, uma explicação para a base matemática deste instrumento foi proposta. Por comparação à forma de várias yupanas, os investigadores descobriram que os cálculos eram baseados na sequência Fibonnaci, utilizando 1,1,2,3,5 e múltiplos de 10, 20 e 40 para os diferentes campos do instrumento. Utilizar a sequência Fibonnaci manteria o número de bolas num campo no mínimo.
Ábaco russo

Ábaco russo.
O ábaco russo, o schoty (счёты), normalmente tem apenas um lado comprido, com 10 bolas em cada fio (excepto um que tem 4 bolas, para fracções de quartos de rublo). Este costuma estar do lado do utilizador. (Modelos mais velhos têm outra corda com 4 bolas, para quartos de kopeks, que eram emitidos até 1916. O ábaco russo é habitualmente utilizado na vertical, com os fios da esquerda para a direita ao modo do livro. As bolas são normalmente curvadas para se moverem para o outro lado no centro, em ordem para manter as bolas em cada um dos lados. É clarificado quando as bolas se devem mover para a direita. Durante a manipulação, as bolas são movidas para a direita. Para mais fácil visualização, as duas bolas do meio de cada corda (a 5ª e a 6ª; no caso da corda excepção, a 3ª e a 4ª) costumam estar com cores diferentes das outras oito. Como tal, a bola mais à esquerda da corda dos milhares (e dos milhões, se existir) costuma também estar pintada de maneira diferente.
O ábaco russo estava em uso em todas as lojas e mercados de toda a antiga União Soviética, e o uso do ábaco era ensinado em todas as escolas até aos anos 90. Hoje é visto como algo arcaico e foi substituído pela calculadora. Na escola, o uso da calculadora é ensinado desde os anos 90.
Ábaco escolar

Ábaco escolar utilizado numa escola primária dinamarquesa, do século XX.
Em todo o mundo, os ábacos têm sido utilizados na educação infantil e na educação básica como uma ajuda ao ensino do sistema numérico e da aritmética. Nos países ocidentais, uma tábua com bolas similar ao ábaco russo mas com fios mais direitos e um plano vertical tem sido comum (ver imagem).
O tipo de ábaco aqui mostrado é vulgarmene utilizado para representar números sem o uso do lugar da ordem dos números. Cada bola e cada fio tem exactamente o mesmo valor e, utilizado desta maneira, pode ser utilizado para representar números acima de 100.
A vantagem educacional mais significante em utilizar um ábaco, ao invés de bolas ou outro material de contagem, quando se pratica a contagem ou a adição simples, é que isso dá aos estudantes uma ideia dos grupos de 10 que são a base do nosso sistema numérico. Mesmo que os adultos tomem esta base de 10 como garantida, é na realidade difícil de aprender. Muitas crianças de 6 anos conseguem contar até 100 de seguida com somente uma pequena consciência dos padrões envolvidos.
Usos pelos deficientes visuais
Um ábaco adaptado, inventado por Helen Keller e chamado de Cranmer, é ainda utilizado por deficientes visuais. Um pedaço de fabrico suave ou borracha é colocado detrás das bolas para não moverem inadvertidamente. Isto mantém as bolas no sítio quando os utilizadores as sentem ou manipulam. Elas utilizam um ábaco para fazer as funções matemáticas multiplicação, divisão, adição, subtracção, raíz quadrada e raíz cúbica.
Embora alunos deficientes visuais tenham beneficiado de calculadoras falantes, o uso do ábaco é ainda ensinado a estes alunos em idades mais novas, tanto em escolas públicas como em escolas privadas de ensino especial. O ábaco ensina competências matemáticas que nunca poderão ser substituídas por uma calculadora falante e é uma ferramenta de ensino importante para estudantes deficientes visuais. Os estudantes deficientes visuais também completam trabalhos de matemática utilizando um escritor de Braille e de código Nemeth (uma espécie de código Braille para a matemática), mas as multplicações largas e as divisões podem ser longas e difíceis. O ábaco dá a estudantes deficientes visuais e visualmente limitados uma ferramenta para resolver problemas matemáticos que iguala a velocidade dos seus colegas sem problemas visuais utilizando papel e lápis. Muitas pessoas acham esta uma máquina útil durante a sua vida.
Curiosidades
Foi mostrado que alunos chineses conseguem fazer contas complexas com um ábaco, mais rapidamente do que um ocidental equipado com uma moderna calculadoraelectrónica. Embora a calculadora apresente a resposta quase instantaneamente, os alunos conseguem terminar o cálculo antes mesmo de seu competidor acabar de digitar osalgarismos no teclado da calculadora.[19]
Figuras medievais do uso do ábaco





















Fonte: pt.wikipedia.org/wiki/Ábaco